
 Common Mistakes Python Developers
 Make and How to Avoid Them

 Python is known for being beginner-friendly, but even seasoned developers can stumble
 into common mistakes. Whether you're just starting or have some experience,
 understanding these pitfalls and learning how to avoid them can make a big difference
 in writing efficient, error-free code. Below, we’ve highlighted some of the most frequent
 mistakes in Python and how you can easily fix them.

 If you’re looking to improve your Python skills and avoid these mistakes, an Online
 Python Training in Pune can be a great way to get structured guidance and hands-on
 practice.

https://www.sevenmentor.com/best-python-classes-in-pune.php
https://www.sevenmentor.com/best-python-classes-in-pune.php

 1. Forgetting to Indent Code Properly

 In Python, indentation is crucial as it defines the structure of your code. Unlike other
 languages that use curly braces ({}) to define code blocks, Python uses indentation to
 separate blocks of code. Forgetting to indent properly can lead to errors.

 How to Avoid It:

 ● Always use 4 spaces per indentation level (avoid tabs).
 ● Many code editors automatically handle indentation for you, but double-check your code

 to ensure consistency.

 Example of an indentation error:

 def greet():
 print("Hello, World!") # This will raise an IndentationError

 Corrected version:

 def greet():
 print("Hello, World!")

 2. Misusing Mutable Default Arguments

 One common mistake in Python is using mutable types like lists or dictionaries as default
 arguments in functions. This can lead to unexpected behavior because default mutable
 arguments retain changes between function calls.

 How to Avoid It:

 ● Use None as a default value and then initialize the mutable object inside the function if
 needed.

 Example of an error:

 def add_item(item, items=[]):
 items.append(item)
 return items

 print(add_item("apple")) # Output: ['apple']
 print(add_item("banana")) # Output: ['apple', 'banana'] - unexpected!

 Corrected version:

 def add_item(item, items=None):
 if items is None:

 items = []
 items.append(item)
 return items

 3. Not Handling Exceptions Properly

 Errors are bound to happen when coding, and Python provides a mechanism called exceptions
 to handle them. A common mistake is to forget to handle potential errors using try and
 except , which can cause your program to crash unexpectedly.

 How to Avoid It:

 ● Always anticipate potential errors and handle them gracefully with try and except
 blocks.

 Example of an error:

 x = 10
 y = 0
 print(x / y) # This will raise a ZeroDivisionError

 Corrected version:

 try:
 x = 10
 y = 0
 print(x / y)

 except ZeroDivisionError:
 print("You can't divide by zero!")

 4. Incorrect Use of is vs. ==

 In Python, is and == are often confused. While == checks if the values of two objects are
 equal, is checks if both objects are the same object in memory. This mistake is common,
 especially when comparing numbers or strings.

 How to Avoid It:

 ● Use == for value comparison and is for identity comparison.

 Example of an error:

 x = [1, 2, 3]
 y = [1, 2, 3]
 print(x == y) # True
 print(x is y) # False - x and y are different objects

 Corrected version:

 ● To check if two objects are the same, use it when comparing singletons like None .

 a = None
 b = None
 print(a is b) # True because they refer to the same object

 5. Using the Wrong Data Type

 Python supports many data types, and using the wrong one can lead to errors or inefficient
 code. For example, trying to perform arithmetic on a string or concatenating a number with a
 string will result in an error.

 How to Avoid It:

 ● Always check and ensure that you’re using the right data type for the task at hand.

 Example of an error:

 age = "25"
 print(age + 5) # This will raise a TypeError because age is a string

 Corrected version:

 age = "25"
 print(int(age) + 5) # Convert age to an integer first

 6. Overusing Global Variables

 While global variables can be useful in some cases, relying too much on them can lead to code
 that’s hard to debug and maintain. It’s best to limit the use of global variables and use local
 variables wherever possible.

 How to Avoid It:

 ● Use functions to encapsulate logic and minimize global variable usage. If you need to
 modify a global variable, use the global keyword.

 Example of an error:

 counter = 0

 def increment():
 counter += 1 # This will raise an UnboundLocalError

 Corrected version:

 counter = 0

 def increment():
 global counter
 counter += 1

 7. Forgetting to Close Files

 When working with files, it's essential to close them after you're done. Forgetting to close a file
 can lead to memory leaks or errors in programs that run for a long time.

 How to Avoid It:

 ● Always close files using file.close() or, preferably, use the with statement to
 ensure the file is properly closed.

 Example of an error:

 file = open("myfile.txt", "r")

 # forget to close the file

 Corrected version:

 with open("myfile.txt", "r") as file:
 content = file.read()

 # file is automatically closed when the block ends

 Conclusion

 Avoiding these common mistakes will help you write cleaner, more efficient, and more reliable
 Python code. As you gain more experience with Python, you’ll learn to spot these issues early
 and prevent them in your projects. Remember, even the best developers make mistakes, but
 learning from them is what makes you a better programmer!

 If you’re new to Python and want to get better, consider taking a Python course in Pune .
 Happy coding!

https://www.sevenmentor.com/best-python-classes-in-pune.php

