
‭Common Mistakes Python Developers‬
‭Make and How to Avoid Them‬

‭Python is known for being beginner-friendly, but even seasoned developers can stumble‬
‭into common mistakes. Whether you're just starting or have some experience,‬
‭understanding these pitfalls and learning how to avoid them can make a big difference‬
‭in writing efficient, error-free code. Below, we’ve highlighted some of the most frequent‬
‭mistakes in Python and how you can easily fix them.‬

‭If you’re looking to improve your Python skills and avoid these mistakes, an‬‭Online‬
‭Python Training in Pune‬‭can be a great way to get structured guidance and hands-on‬
‭practice.‬

https://www.sevenmentor.com/best-python-classes-in-pune.php
https://www.sevenmentor.com/best-python-classes-in-pune.php

‭1. Forgetting to Indent Code Properly‬

‭In Python, indentation is crucial as it defines the structure of your code. Unlike other‬
‭languages that use curly braces (‬‭{}‬‭) to define code blocks, Python uses‬‭indentation‬‭to‬
‭separate blocks of code. Forgetting to indent properly can lead to errors.‬

‭How to Avoid It:‬

‭●‬ ‭Always use 4 spaces per indentation level (avoid tabs).‬
‭●‬ ‭Many code editors automatically handle indentation for you, but double-check your code‬

‭to ensure consistency.‬

‭Example of an indentation error:‬

‭def greet():‬
‭print("Hello, World!") # This will raise an IndentationError‬

‭Corrected version:‬

‭def greet():‬
‭print("Hello, World!")‬

‭2. Misusing Mutable Default Arguments‬

‭One common mistake in Python is using mutable types like lists or dictionaries as default‬
‭arguments in functions. This can lead to unexpected behavior because default mutable‬
‭arguments retain changes between function calls.‬

‭How to Avoid It:‬

‭●‬ ‭Use‬‭None‬‭as a default value and then initialize the mutable object inside the function if‬
‭needed.‬

‭Example of an error:‬

‭def add_item(item, items=[]):‬
‭items.append(item)‬
‭return items‬

‭print(add_item("apple")) # Output: ['apple']‬
‭print(add_item("banana")) # Output: ['apple', 'banana'] - unexpected!‬

‭Corrected version:‬

‭def add_item(item, items=None):‬
‭if items is None:‬

‭items = []‬
‭items.append(item)‬
‭return items‬

‭3. Not Handling Exceptions Properly‬

‭Errors are bound to happen when coding, and Python provides a mechanism called‬‭exceptions‬
‭to handle them. A common mistake is to forget to handle potential errors using‬‭try‬‭and‬
‭except‬‭, which can cause your program to crash unexpectedly.‬

‭How to Avoid It:‬

‭●‬ ‭Always anticipate potential errors and handle them gracefully with‬‭try‬‭and‬‭except‬
‭blocks.‬

‭Example of an error:‬

‭x = 10‬
‭y = 0‬
‭print(x / y) # This will raise a ZeroDivisionError‬

‭Corrected version:‬

‭try:‬
‭x = 10‬
‭y = 0‬
‭print(x / y)‬

‭except ZeroDivisionError:‬
‭print("You can't divide by zero!")‬

‭4. Incorrect Use of‬‭is‬‭vs.‬‭==‬

‭In Python,‬‭is‬‭and‬‭==‬‭are often confused. While‬‭==‬‭checks if the values of two objects are‬
‭equal,‬‭is‬‭checks if both objects are the‬‭same‬‭object‬‭in memory. This mistake is common,‬
‭especially when comparing numbers or strings.‬

‭How to Avoid It:‬

‭●‬ ‭Use‬‭==‬‭for value comparison and‬‭is‬‭for identity comparison.‬

‭Example of an error:‬

‭x = [1, 2, 3]‬
‭y = [1, 2, 3]‬
‭print(x == y) # True‬
‭print(x is y) # False - x and y are different objects‬

‭Corrected version:‬

‭●‬ ‭To check if two objects are the same, use‬‭it when‬‭comparing singletons like‬‭None‬‭.‬

‭a = None‬
‭b = None‬
‭print(a is b) # True because they refer to the same object‬

‭5. Using the Wrong Data Type‬

‭Python supports many data types, and using the wrong one can lead to errors or inefficient‬
‭code. For example, trying to perform arithmetic on a string or concatenating a number with a‬
‭string will result in an error.‬

‭How to Avoid It:‬

‭●‬ ‭Always check and ensure that you’re using the right data type for the task at hand.‬

‭Example of an error:‬

‭age = "25"‬
‭print(age + 5) # This will raise a TypeError because age is a string‬

‭Corrected version:‬

‭age = "25"‬
‭print(int(age) + 5) # Convert age to an integer first‬

‭6. Overusing Global Variables‬

‭While global variables can be useful in some cases, relying too much on them can lead to code‬
‭that’s hard to debug and maintain. It’s best to limit the use of global variables and use‬‭local‬
‭variables‬‭wherever possible.‬

‭How to Avoid It:‬

‭●‬ ‭Use functions to encapsulate logic and minimize global variable usage. If you need to‬
‭modify a global variable, use the‬‭global‬‭keyword.‬

‭Example of an error:‬

‭counter = 0‬

‭def increment():‬
‭counter += 1 # This will raise an UnboundLocalError‬

‭Corrected version:‬

‭counter = 0‬

‭def increment():‬
‭global counter‬
‭counter += 1‬

‭7. Forgetting to Close Files‬

‭When working with files, it's essential to close them after you're done. Forgetting to close a file‬
‭can lead to memory leaks or errors in programs that run for a long time.‬

‭How to Avoid It:‬

‭●‬ ‭Always close files using‬‭file.close()‬‭or, preferably, use the‬‭with‬‭statement to‬
‭ensure the file is properly closed.‬

‭Example of an error:‬

‭file = open("myfile.txt", "r")‬

‭# forget to close the file‬

‭Corrected version:‬

‭with open("myfile.txt", "r") as file:‬
‭content = file.read()‬

‭# file is automatically closed when the block ends‬

‭Conclusion‬

‭Avoiding these common mistakes will help you write cleaner, more efficient, and more reliable‬
‭Python code. As you gain more experience with Python, you’ll learn to spot these issues early‬
‭and prevent them in your projects. Remember, even the best developers make mistakes, but‬
‭learning from them is what makes you a better programmer!‬

‭If you’re new to Python and want to get better, consider taking a‬‭Python course in Pune‬‭.‬
‭Happy coding!‬

https://www.sevenmentor.com/best-python-classes-in-pune.php

