Artificial General Intelligence

Comments ยท 30 Views

Artificial general intelligence (AGI) is a type of expert system (AI) that matches or goes beyond human cognitive capabilities throughout a wide variety of cognitive jobs.

Artificial general intelligence (AGI) is a kind of expert system (AI) that matches or surpasses human cognitive capabilities throughout a wide variety of cognitive jobs. This contrasts with narrow AI, which is restricted to specific tasks. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that significantly exceeds human cognitive capabilities. AGI is considered among the definitions of strong AI.


Creating AGI is a primary goal of AI research study and of business such as OpenAI [2] and Meta. [3] A 2020 survey recognized 72 active AGI research study and development tasks across 37 countries. [4]

The timeline for accomplishing AGI remains a topic of continuous argument among scientists and specialists. Since 2023, some argue that it may be possible in years or decades; others keep it may take a century or longer; a minority think it might never be accomplished; and another minority declares that it is currently here. [5] [6] Notable AI scientist Geoffrey Hinton has revealed concerns about the fast development towards AGI, recommending it could be accomplished quicker than numerous anticipate. [7]

There is argument on the precise meaning of AGI and relating to whether modern large language designs (LLMs) such as GPT-4 are early types of AGI. [8] AGI is a typical subject in sci-fi and futures research studies. [9] [10]

Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many specialists on AI have actually stated that mitigating the danger of human termination presented by AGI needs to be a global top priority. [14] [15] Others find the development of AGI to be too remote to present such a risk. [16] [17]

Terminology


AGI is likewise called strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level intelligent AI, or basic intelligent action. [21]

Some scholastic sources schedule the term "strong AI" for computer programs that experience sentience or awareness. [a] In contrast, weak AI (or narrow AI) is able to resolve one specific issue however lacks basic cognitive capabilities. [22] [19] Some scholastic sources use "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the same sense as humans. [a]

Related concepts consist of artificial superintelligence and transformative AI. An artificial superintelligence (ASI) is a hypothetical kind of AGI that is a lot more usually smart than humans, [23] while the idea of transformative AI associates with AI having a big impact on society, for instance, similar to the farming or commercial revolution. [24]

A framework for categorizing AGI in levels was proposed in 2023 by Google DeepMind scientists. They define 5 levels of AGI: emerging, qualified, professional, virtuoso, and superhuman. For instance, a competent AGI is defined as an AI that exceeds 50% of proficient grownups in a large range of non-physical jobs, and a superhuman AGI (i.e. a synthetic superintelligence) is likewise defined however with a threshold of 100%. They think about large language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]

Characteristics


Various popular meanings of intelligence have been proposed. One of the leading propositions is the Turing test. However, there are other popular definitions, and some researchers disagree with the more popular methods. [b]

Intelligence traits


Researchers usually hold that intelligence is needed to do all of the following: [27]

reason, use method, solve puzzles, and make judgments under unpredictability
represent knowledge, consisting of common sense knowledge
plan
learn
- interact in natural language
- if required, integrate these abilities in conclusion of any given objective


Many interdisciplinary methods (e.g. cognitive science, computational intelligence, and choice making) consider additional characteristics such as creativity (the ability to form unique mental images and ideas) [28] and autonomy. [29]

Computer-based systems that exhibit a lot of these capabilities exist (e.g. see computational creativity, automated thinking, choice support system, robot, evolutionary calculation, smart agent). There is debate about whether modern AI systems possess them to a sufficient degree.


Physical qualities


Other capabilities are thought about desirable in smart systems, as they might impact intelligence or help in its expression. These consist of: [30]

- the capability to sense (e.g. see, hear, and so on), and
- the ability to act (e.g. move and control objects, modification place to check out, etc).


This consists of the ability to spot and react to threat. [31]

Although the capability to sense (e.g. see, hear, etc) and the capability to act (e.g. relocation and manipulate objects, change area to explore, etc) can be preferable for some smart systems, [30] these physical abilities are not strictly needed for an entity to qualify as AGI-particularly under the thesis that big language models (LLMs) might currently be or end up being AGI. Even from a less optimistic point of view on LLMs, there is no company requirement for an AGI to have a human-like type; being a silicon-based computational system is enough, supplied it can process input (language) from the external world in place of human senses. This analysis lines up with the understanding that AGI has actually never ever been proscribed a specific physical personification and hence does not require a capacity for mobility or traditional "eyes and ears". [32]

Tests for human-level AGI


Several tests implied to validate human-level AGI have been thought about, consisting of: [33] [34]

The idea of the test is that the device has to attempt and pretend to be a male, by responding to concerns put to it, and it will just pass if the pretence is reasonably convincing. A considerable portion of a jury, who should not be skilled about machines, must be taken in by the pretence. [37]

AI-complete issues


An issue is informally called "AI-complete" or "AI-hard" if it is believed that in order to resolve it, one would require to implement AGI, due to the fact that the service is beyond the capabilities of a purpose-specific algorithm. [47]

There are numerous issues that have been conjectured to need basic intelligence to resolve in addition to people. Examples include computer vision, natural language understanding, and handling unforeseen scenarios while solving any real-world problem. [48] Even a particular job like translation needs a machine to read and compose in both languages, follow the author's argument (factor), comprehend the context (understanding), and faithfully reproduce the author's initial intent (social intelligence). All of these problems need to be resolved all at once in order to reach human-level machine efficiency.


However, a lot of these jobs can now be performed by contemporary large language designs. According to Stanford University's 2024 AI index, AI has actually reached human-level efficiency on lots of standards for reading understanding and visual thinking. [49]

History


Classical AI


Modern AI research began in the mid-1950s. [50] The first generation of AI researchers were convinced that synthetic basic intelligence was possible and that it would exist in simply a few years. [51] AI leader Herbert A. Simon wrote in 1965: "makers will be capable, within twenty years, of doing any work a man can do." [52]

Their forecasts were the inspiration for Stanley Kubrick and suvenir51.ru Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they could produce by the year 2001. AI pioneer Marvin Minsky was a consultant [53] on the job of making HAL 9000 as practical as possible according to the agreement predictions of the time. He said in 1967, "Within a generation ... the issue of producing 'expert system' will significantly be resolved". [54]

Several classical AI jobs, such as Doug Lenat's Cyc task (that started in 1984), and Allen Newell's Soar task, were directed at AGI.


However, in the early 1970s, it became apparent that researchers had actually grossly ignored the problem of the task. Funding companies became doubtful of AGI and put researchers under increasing pressure to produce helpful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that included AGI objectives like "bring on a table talk". [58] In action to this and the success of professional systems, both market and government pumped money into the field. [56] [59] However, confidence in AI amazingly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never fulfilled. [60] For the 2nd time in 20 years, AI researchers who forecasted the imminent achievement of AGI had actually been misinterpreted. By the 1990s, AI researchers had a credibility for making vain guarantees. They became hesitant to make predictions at all [d] and avoided mention of "human level" synthetic intelligence for worry of being identified "wild-eyed dreamer [s]. [62]

Narrow AI research study


In the 1990s and early 21st century, mainstream AI accomplished industrial success and academic respectability by concentrating on particular sub-problems where AI can produce verifiable results and commercial applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now utilized extensively throughout the innovation industry, and research study in this vein is greatly funded in both academic community and market. Since 2018 [upgrade], development in this field was considered an emerging pattern, and a fully grown stage was anticipated to be reached in more than ten years. [64]

At the turn of the century, numerous mainstream AI scientists [65] hoped that strong AI might be established by combining programs that solve different sub-problems. Hans Moravec wrote in 1988:


I am positive that this bottom-up path to artificial intelligence will one day meet the conventional top-down route over half method, prepared to offer the real-world competence and the commonsense knowledge that has been so frustratingly elusive in thinking programs. Fully smart makers will result when the metaphorical golden spike is driven joining the two efforts. [65]

However, even at the time, this was challenged. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by specifying:


The expectation has actually typically been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way meet "bottom-up" (sensory) approaches somewhere in between. If the grounding considerations in this paper stand, then this expectation is hopelessly modular and there is truly just one feasible path from sense to signs: from the ground up. A free-floating symbolic level like the software application level of a computer system will never ever be reached by this route (or vice versa) - nor is it clear why we should even attempt to reach such a level, since it appears arriving would simply amount to uprooting our signs from their intrinsic significances (consequently simply decreasing ourselves to the functional equivalent of a programmable computer system). [66]

Modern synthetic basic intelligence research study


The term "synthetic general intelligence" was used as early as 1997, by Mark Gubrud [67] in a discussion of the implications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative maximises "the ability to satisfy goals in a large range of environments". [68] This type of AGI, defined by the capability to increase a mathematical meaning of intelligence instead of display human-like behaviour, [69] was also called universal artificial intelligence. [70]

The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and initial outcomes". The very first summertime school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, arranged by Lex Fridman and including a variety of guest lecturers.


As of 2023 [update], a small number of computer scientists are active in AGI research study, and lots of add to a series of AGI conferences. However, significantly more researchers have an interest in open-ended knowing, [76] [77] which is the idea of permitting AI to constantly discover and innovate like humans do.


Feasibility


Since 2023, the development and potential achievement of AGI remains a topic of intense debate within the AI neighborhood. While traditional consensus held that AGI was a distant objective, current advancements have actually led some scientists and industry figures to claim that early types of AGI might currently exist. [78] AI pioneer Herbert A. Simon speculated in 1965 that "machines will be capable, within twenty years, of doing any work a man can do". This prediction stopped working to come true. Microsoft co-founder Paul Allen thought that such intelligence is unlikely in the 21st century because it would need "unforeseeable and fundamentally unpredictable advancements" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf in between modern computing and human-level synthetic intelligence is as large as the gulf in between present area flight and useful faster-than-light spaceflight. [80]

An additional challenge is the absence of clarity in specifying what intelligence entails. Does it need awareness? Must it display the ability to set goals along with pursue them? Is it purely a matter of scale such that if design sizes increase adequately, intelligence will emerge? Are centers such as planning, reasoning, and causal understanding needed? Does intelligence need clearly duplicating the brain and its particular professors? Does it need emotions? [81]

Most AI scientists think strong AI can be achieved in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of accomplishing strong AI. [82] [83] John McCarthy is amongst those who think human-level AI will be accomplished, however that today level of progress is such that a date can not precisely be forecasted. [84] AI specialists' views on the feasibility of AGI wax and subside. Four surveys conducted in 2012 and 2013 suggested that the typical estimate amongst experts for when they would be 50% confident AGI would show up was 2040 to 2050, depending upon the poll, with the mean being 2081. Of the specialists, 16.5% responded to with "never" when asked the exact same question but with a 90% self-confidence instead. [85] [86] Further existing AGI progress factors to consider can be found above Tests for verifying human-level AGI.


A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year amount of time there is a strong predisposition towards anticipating the arrival of human-level AI as between 15 and 25 years from the time the forecast was made". They evaluated 95 forecasts made between 1950 and 2012 on when human-level AI will come about. [87]

In 2023, Microsoft scientists published a comprehensive evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, our company believe that it could reasonably be seen as an early (yet still incomplete) variation of a synthetic basic intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 outshines 99% of humans on the Torrance tests of creativity. [89] [90]

Blaise Agรผera y Arcas and Peter Norvig wrote in 2023 that a considerable level of general intelligence has already been achieved with frontier models. They composed that reluctance to this view comes from 4 main reasons: a "healthy hesitation about metrics for AGI", an "ideological dedication to alternative AI theories or strategies", a "dedication to human (or biological) exceptionalism", or a "concern about the financial implications of AGI". [91]

2023 also marked the development of big multimodal designs (big language designs capable of processing or producing numerous techniques such as text, audio, and images). [92]

In 2024, OpenAI launched o1-preview, the very first of a series of designs that "invest more time believing before they react". According to Mira Murati, this capability to think before reacting represents a new, additional paradigm. It improves model outputs by investing more computing power when creating the response, whereas the design scaling paradigm improves outputs by increasing the design size, training information and training compute power. [93] [94]

An OpenAI staff member, Vahid Kazemi, declared in 2024 that the business had actually accomplished AGI, stating, "In my viewpoint, we have actually already accomplished AGI and it's much more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any job", it is "better than most humans at many jobs." He likewise attended to criticisms that large language designs (LLMs) simply follow predefined patterns, comparing their learning procedure to the scientific approach of observing, hypothesizing, and validating. These declarations have sparked debate, as they rely on a broad and unconventional definition of AGI-traditionally comprehended as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's designs demonstrate impressive versatility, they may not completely fulfill this requirement. Notably, Kazemi's remarks came soon after OpenAI eliminated "AGI" from the regards to its partnership with Microsoft, triggering speculation about the company's strategic intentions. [95]

Timescales


Progress in artificial intelligence has historically gone through periods of quick progress separated by durations when progress appeared to stop. [82] Ending each hiatus were basic advances in hardware, software or both to develop area for more development. [82] [98] [99] For example, the computer hardware available in the twentieth century was not enough to execute deep knowing, which needs great deals of GPU-enabled CPUs. [100]

In the intro to his 2006 book, [101] Goertzel states that quotes of the time needed before a genuinely flexible AGI is built differ from 10 years to over a century. As of 2007 [upgrade], the agreement in the AGI research community appeared to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was possible. [103] Mainstream AI scientists have actually provided a vast array of opinions on whether progress will be this fast. A 2012 meta-analysis of 95 such opinions discovered a bias towards forecasting that the beginning of AGI would happen within 16-26 years for contemporary and historical predictions alike. That paper has been criticized for how it categorized opinions as specialist or non-expert. [104]

In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competition with a top-5 test error rate of 15.3%, considerably much better than the second-best entry's rate of 26.3% (the traditional method utilized a weighted sum of ratings from different pre-defined classifiers). [105] AlexNet was considered as the initial ground-breaker of the present deep knowing wave. [105]

In 2017, scientists Feng Liu, Yong Shi, and Ying Liu carried out intelligence tests on publicly available and freely available weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ worth of about 47, which corresponds around to a six-year-old child in first grade. An adult pertains to about 100 usually. Similar tests were carried out in 2014, with the IQ rating reaching an optimum worth of 27. [106] [107]

In 2020, OpenAI established GPT-3, a language model capable of performing lots of diverse tasks without particular training. According to Gary Grossman in a VentureBeat article, while there is consensus that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be categorized as a narrow AI system. [108]

In the very same year, Jason Rohrer used his GPT-3 account to develop a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI requested changes to the chatbot to comply with their security guidelines; Rohrer detached Project December from the GPT-3 API. [109]

In 2022, DeepMind established Gato, a "general-purpose" system capable of carrying out more than 600 various jobs. [110]

In 2023, Microsoft Research published a research study on an early variation of OpenAI's GPT-4, contending that it exhibited more general intelligence than previous AI models and showed human-level efficiency in tasks spanning several domains, such as mathematics, coding, and law. This research study sparked a dispute on whether GPT-4 could be thought about an early, incomplete version of synthetic basic intelligence, emphasizing the need for additional expedition and examination of such systems. [111]

In 2023, the AI scientist Geoffrey Hinton specified that: [112]

The idea that this things could actually get smarter than individuals - a few individuals thought that, [...] But many people thought it was way off. And I believed it was way off. I believed it was 30 to 50 years or perhaps longer away. Obviously, I no longer believe that.


In May 2023, Demis Hassabis likewise stated that "The development in the last couple of years has actually been pretty amazing", and that he sees no reason that it would slow down, expecting AGI within a years and even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within 5 years, AI would can passing any test at least as well as humans. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a former OpenAI staff member, estimated AGI by 2027 to be "strikingly plausible". [115]

Whole brain emulation


While the development of transformer designs like in ChatGPT is considered the most appealing path to AGI, [116] [117] entire brain emulation can act as an alternative technique. With whole brain simulation, a brain design is developed by scanning and mapping a biological brain in information, and then copying and simulating it on a computer system or another computational device. The simulation model must be adequately loyal to the initial, so that it acts in virtually the very same method as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research purposes. It has actually been gone over in synthetic intelligence research [103] as a method to strong AI. Neuroimaging technologies that might provide the required in-depth understanding are improving quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of enough quality will become available on a similar timescale to the computing power required to imitate it.


Early approximates


For low-level brain simulation, an extremely effective cluster of computers or GPUs would be required, offered the enormous quantity of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on typical 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number decreases with age, stabilizing by adulthood. Estimates vary for an adult, ranging from 1014 to 5 ร— 1014 synapses (100 to 500 trillion). [120] A quote of the brain's processing power, based upon a basic switch design for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]

In 1997, Kurzweil took a look at different price quotes for the hardware required to equal the human brain and adopted a figure of 1016 calculations per second (cps). [e] (For contrast, if a "calculation" was equivalent to one "floating-point operation" - a procedure used to rate current supercomputers - then 1016 "calculations" would be equivalent to 10 petaFLOPS, achieved in 2011, while 1018 was attained in 2022.) He utilized this figure to anticipate the necessary hardware would be offered at some point in between 2015 and 2025, if the rapid development in computer system power at the time of writing continued.


Current research study


The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has developed an especially in-depth and publicly available atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.


Criticisms of simulation-based techniques


The artificial neuron design presumed by Kurzweil and utilized in many present artificial neural network executions is basic compared with biological nerve cells. A brain simulation would likely have to catch the comprehensive cellular behaviour of biological nerve cells, presently comprehended only in broad summary. The overhead introduced by complete modeling of the biological, chemical, and physical information of neural behaviour (specifically on a molecular scale) would require computational powers numerous orders of magnitude bigger than Kurzweil's price quote. In addition, the quotes do not account for glial cells, which are understood to contribute in cognitive procedures. [125]

An essential criticism of the simulated brain technique stems from embodied cognition theory which asserts that human embodiment is an important element of human intelligence and is needed to ground significance. [126] [127] If this theory is right, any fully practical brain model will need to incorporate more than simply the neurons (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as a choice, but it is unknown whether this would suffice.


Philosophical perspective


"Strong AI" as defined in viewpoint


In 1980, thinker John Searle created the term "strong AI" as part of his Chinese room argument. [128] He proposed a difference between two hypotheses about artificial intelligence: [f]

Strong AI hypothesis: An expert system system can have "a mind" and "awareness".
Weak AI hypothesis: An expert system system can (only) imitate it believes and has a mind and awareness.


The very first one he called "strong" since it makes a stronger statement: it presumes something unique has occurred to the device that goes beyond those abilities that we can test. The behaviour of a "weak AI" device would be exactly identical to a "strong AI" device, however the latter would likewise have subjective conscious experience. This usage is likewise common in scholastic AI research and books. [129]

In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil use the term "strong AI" to suggest "human level synthetic basic intelligence". [102] This is not the exact same as Searle's strong AI, unless it is presumed that awareness is essential for human-level AGI. Academic theorists such as Searle do not believe that is the case, and to most expert system researchers the question is out-of-scope. [130]

Mainstream AI is most thinking about how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it genuine or a simulation." [130] If the program can act as if it has a mind, then there is no requirement to understand if it actually has mind - undoubtedly, there would be no chance to tell. For AI research, Searle's "weak AI hypothesis" is comparable to the declaration "synthetic basic intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for given, and do not care about the strong AI hypothesis." [130] Thus, for scholastic AI research, "Strong AI" and "AGI" are two various things.


Consciousness


Consciousness can have numerous meanings, and some aspects play considerable functions in science fiction and the principles of synthetic intelligence:


Sentience (or "phenomenal awareness"): The ability to "feel" understandings or feelings subjectively, rather than the ability to factor about understandings. Some thinkers, such as David Chalmers, use the term "awareness" to refer specifically to remarkable awareness, which is approximately comparable to sentience. [132] Determining why and how subjective experience occurs is called the tough issue of consciousness. [133] Thomas Nagel discussed in 1974 that it "feels like" something to be conscious. If we are not mindful, then it doesn't seem like anything. Nagel uses the example of a bat: we can smartly ask "what does it seem like to be a bat?" However, we are not likely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat appears to be mindful (i.e., has consciousness) but a toaster does not. [134] In 2022, a Google engineer claimed that the business's AI chatbot, LaMDA, had accomplished life, though this claim was extensively challenged by other specialists. [135]

Self-awareness: To have conscious awareness of oneself as a separate person, specifically to be purposely aware of one's own thoughts. This is opposed to merely being the "topic of one's believed"-an os or debugger is able to be "conscious of itself" (that is, to represent itself in the exact same method it represents whatever else)-however this is not what individuals usually indicate when they utilize the term "self-awareness". [g]

These characteristics have an ethical measurement. AI life would trigger issues of well-being and legal defense, similarly to animals. [136] Other elements of consciousness related to cognitive capabilities are likewise relevant to the principle of AI rights. [137] Finding out how to integrate advanced AI with existing legal and social structures is an emergent concern. [138]

Benefits


AGI might have a variety of applications. If oriented towards such objectives, AGI might assist alleviate various issues on the planet such as cravings, poverty and health problems. [139]

AGI might enhance efficiency and effectiveness in the majority of tasks. For instance, in public health, AGI might accelerate medical research study, significantly versus cancer. [140] It might look after the senior, [141] and democratize access to rapid, top quality medical diagnostics. It could provide fun, low-cost and tailored education. [141] The need to work to subsist might end up being outdated if the wealth produced is appropriately rearranged. [141] [142] This also raises the question of the place of humans in a significantly automated society.


AGI could also help to make logical choices, and to anticipate and prevent disasters. It could also help to profit of possibly catastrophic innovations such as nanotechnology or environment engineering, while preventing the associated threats. [143] If an AGI's main goal is to avoid existential disasters such as human termination (which could be difficult if the Vulnerable World Hypothesis turns out to be true), [144] it could take measures to drastically lower the threats [143] while reducing the impact of these measures on our lifestyle.


Risks


Existential threats


AGI might represent several kinds of existential danger, which are dangers that threaten "the premature extinction of Earth-originating smart life or the long-term and drastic destruction of its capacity for preferable future development". [145] The danger of human termination from AGI has been the topic of many debates, but there is also the possibility that the advancement of AGI would result in a completely problematic future. Notably, it could be used to spread out and maintain the set of values of whoever develops it. If mankind still has moral blind spots similar to slavery in the past, AGI might irreversibly entrench it, avoiding moral development. [146] Furthermore, AGI might help with mass monitoring and indoctrination, which could be used to produce a steady repressive worldwide totalitarian program. [147] [148] There is also a threat for the makers themselves. If machines that are sentient or otherwise worthwhile of moral consideration are mass produced in the future, taking part in a civilizational path that forever ignores their well-being and interests might be an existential disaster. [149] [150] Considering how much AGI might improve humanity's future and help in reducing other existential dangers, Toby Ord calls these existential dangers "an argument for proceeding with due care", not for "abandoning AI". [147]

Risk of loss of control and human extinction


The thesis that AI poses an existential risk for people, and that this risk needs more attention, is controversial however has been endorsed in 2023 by many public figures, AI scientists and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]

In 2014, Stephen Hawking slammed extensive indifference:


So, dealing with possible futures of incalculable advantages and threats, the professionals are undoubtedly doing everything possible to guarantee the very best result, right? Wrong. If an exceptional alien civilisation sent us a message stating, 'We'll get here in a few years,' would we just reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is occurring with AI. [153]

The possible fate of humanity has actually sometimes been compared to the fate of gorillas threatened by human activities. The comparison states that greater intelligence allowed humanity to dominate gorillas, which are now vulnerable in methods that they could not have anticipated. As a result, the gorilla has actually ended up being a threatened types, not out of malice, however just as a collateral damage from human activities. [154]

The skeptic Yann LeCun thinks about that AGIs will have no desire to control humankind which we should take care not to anthropomorphize them and analyze their intents as we would for people. He said that people won't be "smart adequate to design super-intelligent machines, yet extremely dumb to the point of giving it moronic goals with no safeguards". [155] On the other side, the principle of crucial convergence recommends that practically whatever their objectives, smart agents will have factors to attempt to endure and acquire more power as intermediary steps to achieving these objectives. And that this does not need having feelings. [156]

Many scholars who are concerned about existential threat advocate for more research study into fixing the "control issue" to address the question: what kinds of safeguards, algorithms, or architectures can programmers carry out to maximise the possibility that their recursively-improving AI would continue to behave in a friendly, rather than damaging, way after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which might result in a race to the bottom of security preventative measures in order to release products before rivals), [159] and the usage of AI in weapon systems. [160]

The thesis that AI can position existential threat likewise has critics. Skeptics typically say that AGI is unlikely in the short-term, or that concerns about AGI sidetrack from other problems connected to existing AI. [161] Former Google scams czar Shuman Ghosemajumder considers that for many individuals outside of the innovation industry, existing chatbots and LLMs are currently perceived as though they were AGI, resulting in further misconception and worry. [162]

Skeptics in some cases charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence changing an illogical belief in a supreme God. [163] Some scientists think that the interaction campaigns on AI existential risk by particular AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at effort at regulative capture and to pump up interest in their products. [164] [165]

In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other market leaders and researchers, issued a joint declaration asserting that "Mitigating the danger of termination from AI need to be a worldwide top priority together with other societal-scale threats such as pandemics and nuclear war." [152]

Mass unemployment


Researchers from OpenAI estimated that "80% of the U.S. labor force could have at least 10% of their work jobs impacted by the intro of LLMs, while around 19% of workers may see a minimum of 50% of their tasks impacted". [166] [167] They consider workplace workers to be the most exposed, for example mathematicians, accounting professionals or web designers. [167] AGI could have a better autonomy, ability to make decisions, to interface with other computer system tools, however likewise to manage robotized bodies.


According to Stephen Hawking, the outcome of automation on the lifestyle will depend upon how the wealth will be rearranged: [142]

Everyone can take pleasure in a life of glamorous leisure if the machine-produced wealth is shared, or many people can wind up badly bad if the machine-owners successfully lobby versus wealth redistribution. So far, the pattern seems to be toward the 2nd option, with technology driving ever-increasing inequality


Elon Musk considers that the automation of society will require federal governments to embrace a universal basic earnings. [168]

See likewise


Artificial brain - Software and hardware with cognitive capabilities comparable to those of the animal or human brain
AI effect
AI safety - Research location on making AI safe and useful
AI positioning - AI conformance to the desired objective
A.I. Rising - 2018 film directed by Lazar Bodroลพa
Expert system
Automated artificial intelligence - Process of automating the application of maker learning
BRAIN Initiative - Collaborative public-private research initiative announced by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre
General game playing - Ability of artificial intelligence to play different games
Generative expert system - AI system efficient in creating material in action to triggers
Human Brain Project - Scientific research study task
Intelligence amplification - Use of infotech to augment human intelligence (IA).
Machine ethics - Moral behaviours of manufactured machines.
Moravec's paradox.
Multi-task knowing - Solving several maker learning tasks at the very same time.
Neural scaling law - Statistical law in machine knowing.
Outline of artificial intelligence - Overview of and topical guide to expert system.
Transhumanism - Philosophical movement.
Synthetic intelligence - Alternate term for or form of expert system.
Transfer learning - Machine knowing technique.
Loebner Prize - Annual AI competition.
Hardware for expert system - Hardware specially designed and optimized for expert system.
Weak expert system - Form of expert system.


Notes


^ a b See listed below for the origin of the term "strong AI", and see the academic meaning of "strong AI" and weak AI in the article Chinese room.
^ AI founder John McCarthy composes: "we can not yet identify in general what kinds of computational treatments we desire to call smart. " [26] (For a conversation of some definitions of intelligence utilized by expert system scientists, see philosophy of artificial intelligence.).
^ The Lighthill report specifically criticized AI's "grand objectives" and led the dismantling of AI research in England. [55] In the U.S., DARPA became identified to fund only "mission-oriented direct research study, rather than standard undirected research study". [56] [57] ^ As AI founder John McCarthy writes "it would be a fantastic relief to the remainder of the employees in AI if the innovators of new basic formalisms would express their hopes in a more protected kind than has often been the case." [61] ^ In "Mind Children" [122] 1015 cps is used. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly represent 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil introduced.
^ As defined in a standard AI book: "The assertion that devices might possibly act intelligently (or, maybe better, act as if they were smart) is called the 'weak AI' hypothesis by thinkers, and the assertion that devices that do so are actually thinking (rather than replicating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References


^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is created to perform a single job.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to make sure that synthetic basic intelligence advantages all of mankind.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new goal is developing synthetic basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D projects were recognized as being active in 2020.
^ a b c "AI timelines: What do professionals in expert system expect for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023.
^ "AI pioneer Geoffrey Hinton gives up Google and warns of threat ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is difficult to see how you can avoid the bad actors from utilizing it for bad things.
^ Bubeck, Sรฉbastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals triggers of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you alter modifications you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York Times. The genuine threat is not AI itself but the method we release it.
^ "Impressed by expert system? Experts state AGI is coming next, and it has 'existential' threats". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could posture existential threats to humanity.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last development that humanity requires to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the risk of termination from AI need to be a global concern.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI experts warn of danger of termination from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from developing makers that can outthink us in general ways.
^ LeCun, Yann (June 2023). "AGI does not present an existential threat". Medium. There is no factor to fear AI as an existential risk.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil explains strong AI as "maker intelligence with the complete variety of human intelligence.".
^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical symbol system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007.
^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Expert system is transforming our world - it is on all of us to ensure that it works out". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007.
^ This list of intelligent qualities is based on the subjects covered by major AI textbooks, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body shapes the way we believe: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reconsidered: The idea of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reconsidered: The principle of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What happens when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a genuine boy - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists contest whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing whatever from the bar examination to AP Biology. Here's a list of challenging examinations both AI versions have actually passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Capitalize on It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is obsolete. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended testing an AI chatbot's capability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 priced estimate in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), priced estimate in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer scientists and software engineers prevented the term synthetic intelligence for fear of being deemed wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who created the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020.
^ "ะ˜ะทะฑะธั€ะฐะตะผะธ ะดะธัั†ะธะฟะปะธะฝะธ 2009/2010 - ะฟั€ะพะปะตั‚ะตะฝ ั‚ั€ะธะผะตัั‚ัŠั€" [Elective courses 2009/2010 - spring trimester] ะคะฐะบัƒะปั‚ะตั‚ ะฟะพ ะผะฐั‚ะตะผะฐั‚ะธะบะฐ ะธ ะธะฝั„ะพั€ะผะฐั‚ะธะบะฐ [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ "ะ˜ะทะฑะธั€ะฐะตะผะธ ะดะธัั†ะธะฟะปะธะฝะธ 2010/2011 - ะทะธะผะตะฝ ั‚ั€ะธะผะตัั‚ัŠั€" [Elective courses 2010/2011 - winter season trimester] ะคะฐะบัƒะปั‚ะตั‚ ะฟะพ ะผะฐั‚ะตะผะฐั‚ะธะบะฐ ะธ ะธะฝั„ะพั€ะผะฐั‚ะธะบะฐ [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of machine intelligence: Despite development in maker intelligence, synthetic general intelligence is still a significant obstacle". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sรฉbastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Expert system will not turn into a Frankenstein's beast". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why general expert system will not be recognized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us utopia or damage?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016.
^ Mรผller, V. C., & Bostrom, N. (2016 ). Future progress in synthetic intelligence: A study of skilled opinion. In Fundamental problems of expert system (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva ลฝรกฤkovรก, Michal Polรกk and Radek Schuster, 52-75. Plzeลˆ: University of West Bohemia
^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023.
^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023.
^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of machines: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185.
^ Arcas, Blaise Agรผera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema.
^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024.
^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024.
^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. IS

Comments